A Stochastic Framework to Model Extrinsic Noise in Gene Regulatory Networks

نویسندگان

  • Ariane Leoni Hofmann
  • Reinhard Laubenbacher
چکیده

Stochastic modeling to represent intrinsic and extrinsic noise is an important challenge in molecular systems biology. There are numerous ways to model intrinsic noise. One framework for intrinsic noise in gene regulatory networks was recently proposed within the discrete setting. In contrast, extrinsic perturbations were rarely modeled due to the complex mechanisms that contribute to its emergence. Here a discrete framework to model extrinsic noise is proposed. The interacting species of the model are represented by discrete variables and are perturbed to represent extrinsic noise. In particular, they are subject to a discretized lognormal distribution. Additionally, a delay is imposed on the update with a certain probability. These two perturbations represent global extrinsic noise and pathway-specific extrinsic noise. It leads to large variations in the concentration of proteins, which is consistent with an existing continuous way of modeling extrinsic fluctuations. The framework is applied to three different published discrete models: the cell fate of lambda phage infection of bacteria, the lactose utilization system in E. coli, and a signaling network in melanoma cells. The framework captures factors that significantly contribute to the random decision between lysis and lysogeny as well as explains the bistable switch in the model of the lac operon. Finally, a feed-forward loop analysis is conducted by measuring and comparing the noise level in the target protein of feed-forward loops. This analysis reveals the ability of certain feed-forward loops to attenuate or amplify fluctuations, dependent upon various levels of noise. In conclusion, this thesis aims to resolve the question of how the extrinsic noise can be modeled and how biological systems are able to maintain functionality in the wake of such large variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Stabilizing gene regulatory networks through feedforward loops.

The global dynamics of gene regulatory networks are known to show robustness to perturbations in the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular mechanism underlying this robustness has been identified as the action of so-called microRNAs that operate via feedforward loops. We present results of a computational study, using the modeling framewo...

متن کامل

Adjusting Phenotypes by Noise Control

Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012